自动蛋白功能预测涉及从其已知序列推断蛋白质的功能。此函数通常由从预定义的基因本体论中提出的术语列表来描述,该术语是在层次上组织的。预测蛋白质功能需要为每个项做出二进制决策,确定它是否适用于给定序列。论文将主要探讨深度转移学习的应用,并利用蛋白质级信息和注释之间的相互关系。要求:1。了解深度学习和转移学习。2。在自动化蛋白质功能预测中熟悉当前的最新技术,特别强调了最近的深度学习工具。3。进行文献搜索方法AD 1和2。4。设计自己的算法 /修改现有算法,以自动预测蛋白质功能,并深入转移学习。5。将您的解决方案与基本基准测试(BLAST + KNN,PRIORS)或搜索中讨论的方法与可用实现进行比较,使用传统的评估分类器质量的度量(精度,回忆,F1)。
主要关键词