文本属性图(标签)是连接的文本文档的图。图形模型可以有效地学习标签,但是它们的培训在很大程度上依赖于人类通知的标签,在许多应用中,这些标签稀缺甚至无法使用。大型语言模型(LLMS)最近在少数拍和零标签学习方面表现出了显着的功能,但它们遭受了可扩展性,成本和隐私问题的困扰。因此,在这项工作中,我们通过将LLM的功率提炼成Tag学习的本地图模型来协同LLM和图形模型,并具有互补的优势。要解决LLMS(文本的生成模型)和图形模型(图形的歧视模型)之间的固有差距,我们首先提议让LLMs用丰富的理由教授解释器,然后让学生模型模仿解释器的推理,而没有LLMS的理由。我们将LLM的文本原理转换为多级图理由,以训练解释器模型,并根据标签的功能将学生模型与解释器模型保持一致。广泛的实验验证了我们提出的框架的功效。
主要关键词