摘要 - 已提出了无线贝叶斯神经网络(WBNNS),以解决能源效率和设计复杂性的问题,以在资源约束边缘设备中进行培训和分类。通过引入热激活的DNA致动器和磁性旋转旋转振荡器(STOS),WBNN能够从小型数据集中学习并解决过度拟合的问题,以实现准确的分类结果。为了有效地生成高斯变量,这项工作提出了电磁耦合的stos,可以固有地创建可编程频谱分布,以用于贝叶斯神经网络(BNNS)的变异推断。具体而言,通过使用最大量的高斯变量,与BNN进行单层将DNA折纸与STO进行单层整合的纳米级异质结构,以执行乘法和积累(MAC),包括:1)具有加权偏置电流的STOS,以将概率分布和生成振动范围设置为频率范围,通过频率进行频率范围,通过频率进行频率范围,以使oscilly oscill osscill频率通过频率进行频率范围。 (2)可以选择性地整合来自各种STO的无线信号以将接收到的能量转换为可编程磁场的DNA折纸。仿真结果表明,所提出的WBNN可以在消耗625 µW时获得高于96%的精度。
主要关键词