Loading...
机构名称:
¥ 1.0

扩散模型在生成建模中取得了前所未有的性能。扩散模型常用的潜在代码公式是一系列逐渐去噪的样本,而不是 GAN、VAE 和正则化流的更简单(例如高斯)潜在空间。本文提供了扩散模型潜在空间的替代高斯公式,以及将图像映射到潜在空间的可重构 DPM 编码器。虽然我们的公式纯粹基于扩散模型的定义,但我们展示了几个有趣的后果。(1)从实证上讲,我们观察到在相关领域独立训练的两个扩散模型会出现一个共同的潜在空间。根据这一发现,我们提出了 CycleDiffusion,它使用 DPM 编码器进行非配对的图像到图像转换。此外,将 CycleDiffusion 应用于文本到图像的扩散模型,我们表明大规模文本到图像的扩散模型可用作零样本图像到图像编辑器。(2)人们可以通过控制基于能量模型的统一即插即用公式中的潜在代码来指导预训练的扩散模型和 GAN。使用 CLIP 模型和人脸识别模型作为指导,我们证明扩散模型比 GAN 对低密度亚群和个体的覆盖率更高。1

统一扩散模型的潜在空间,...

统一扩散模型的潜在空间,...PDF文件第1页

统一扩散模型的潜在空间,...PDF文件第2页

统一扩散模型的潜在空间,...PDF文件第3页

统一扩散模型的潜在空间,...PDF文件第4页

统一扩散模型的潜在空间,...PDF文件第5页

相关文件推荐

2015 年
¥43.0