我们研究了一组具有严格偏好的代理之间不可分割对象的随机分配。我们表明,不存在一致、防策略和无嫉妒的机制。将第一个要求弱化为 q-一致 - 即当每个代理将不同的对象排在首位时,每个代理将以至少 q 的概率获得其最喜欢的对象 - 我们表明,满足防策略性、无嫉妒性和事后弱无浪费性的机制只有在 q ≤ 2/n(其中 n 是代理数量)时才能达到 q-一致。为了证明这个界限是严格的,我们引入了一种新机制,即随机独裁兼均等分配 (RDcED),并表明当所有对象都可以接受时,它会达到这个最大界限。此外,对于三个代理,RDcED 具有前三个属性和事后弱效率的特征。如果对象可能无法接受,那么即使事后弱非浪费性,策略防护性和无嫉妒性也是共同不相容的。