扩散模型的出现代表了生成建模,表现出非凡的能力,可以从文本输入中产生高保真图像。与此同时,图像恢复(IR),包括超分辨率,脱毛,去核,涂料和压缩,仍然是低级视力研究中的重要领域。最近,将扩散模型集成到IR任务中的趋势越来越大,产生的结果超过了以前的方法。尽管如此,扩散模型在IR中的应用提出了自己的一系列挑战,包括模型设计中的复杂性以及有关操作效率的关注点。该项目从Wang等人的“实用扩散的先验扩散”(StablesR)中汲取了灵感。[2023],它巧妙地采用了预训练的文本对图像扩散模型的生成能力来增强盲目的超级分辨率(SR)任务。Stables的框架如图1所示。这项研究展示了与未修饰的稳定扩散Rombach等人进行微调的时间感知编码器。[2022]模型,可导致重大的恢复改进,同时保持原始的生成框架并减少培训费用。在这个项目中,我们旨在扩大跨各种IR任务中Stables的应用,并调查更轻巧的解决方案的潜力。
主要关键词