在过去五年中,使用机器学习技术对高安全性登记板(HSRP)的检测和认可取得了相当大的势头,这是在深度学习进步的推动下,尤其是卷积神经网络(CNNS)。这些模型已被证明有效地识别字母数字模式并处理与HSRP相关的复杂性,例如不同的字体,设计和安全功能。在2019年,Li等人。在CNN中引入了专门用于车辆登记板检测的CNN中的使用。通过将模型的注意力集中在数字板的关键区域上,它们的方法提高了结果的准确性和解释性。这项研究在应对复杂的HSRP设计带来的挑战方面至关重要,该设计通常包括全息图和水印。基于注意力的方法使该模型忽略了无关紧要的背景信息,而是专注于板块的重要细节[1]。Uddin等人解决了HSRP检测域中标记的数据有限的问题。在2020年,使用了转移学习技术。通过在大规模数据集上微调预训练的模型,然后将其调整为HSRP识别的特定任务,它们在速度和准确性方面都有显着提高。他们的研究还探讨了数据扩展等技术,以增强模型的概括能力,当时应用于不同的HSRP格式[2]。在2021年,Shah等人。此方法对于处理监视录像中通常遇到的模糊或扭曲的图像特别有用[3]。引入了多分辨率CNN体系结构,以改善在不同条件下(例如不同的图像分辨率,角度和环境因素)的HSRP检测。他们的方法使网络可以在多个尺度上处理图像,从而改善了鲁棒性,尤其是在现实情况下,可以从不同角度或在弱光条件下捕获板。在2022年,Patel和Rao开发了一种混合系统,将CNN与光学特征识别(OCR)技术相结合,用于检测和识别HSRPS。他们的方法利用CNN来定位和检测板,而OCR则被用来读取板上的字母数字字符。这种集成导致对HSRP的检测和识别更加准确,尤其是在安全特征或字体显着变化的情况下[4]。Kumar等。 (2023)的重点是克服缺乏大规模数据集对HSRP检测所带来的挑战。 他们的研究介绍了新型的数据增强技术和合成数据集生成,其中人为生成的HSRP图像用于训练CNN模型。 这种方法不仅扩展了数据集,还扩展了Kumar等。(2023)的重点是克服缺乏大规模数据集对HSRP检测所带来的挑战。他们的研究介绍了新型的数据增强技术和合成数据集生成,其中人为生成的HSRP图像用于训练CNN模型。这种方法不仅扩展了数据集,还扩展了
主要关键词