摘要。使用技术资源来开发医院环境中的关键任务,例如手术室,必须仔细完成,例如,在使用键盘或鼠标控制的设备时,避免通过触摸污染材料。从这个意义上讲,可以通过手势控制的设备作为克服此问题的适当方法。尽管有明显的好处,但这种类型的互动带来了一些挑战,例如需要适合执行任务的手势的词汇,此外,还有一种手势词汇,可以被环境中存在的传感器所识别。在这项工作中,我们描述了使用LEAP运动传感器来解决手势词汇识别任务的结果,旨在将其与Maring'a区域大学医院紧急和紧急部门使用的系统相结合。为此,我们定义了一个手势 - 示例和一组由指尖距离手掌中心的距离组成的特征。之后,我们创建了一个手势数据集,该数据集由10个不同的手势组成,共有20,000个样本。创建的数据库也将作为对这项工作的贡献。对于分类,我们评估了许多不同的分类。实验表明,可以使用拟议的策略来实现有希望的结果:通过优化贝叶斯搜索的超参数优化,并将模型与投票分类器相结合,我们实现了95.8个关键字的准确性:Leap Motion Sensor·手势识别·人体计算机界面·人体界面·信息系统。
主要关键词