Loading...
机构名称:
¥ 1.0

计算机工程系,Keystone工程学院摘要:室内设计中生成AI的整合已改变了传统方法,使设计师能够以令人印象深刻的效率探索新概念。本文介绍了领先的生成模型的比较研究,例如风格,变异自动编码器(VAE),PIX2PIX和强化学习(RL) - 在将草图转化为示意图中的效率上,以产生多样化的室内布局,并产生多样化的室内布局和优化空间。通过分析这些模型的结果,我们表明了它们创建独特的设计解决方案,同时增强美学吸引力。该研究强调了设计精度的实质性增强,强调了生成AI模型提升设计过程并创建更量身定制的内部解决方案的潜力。本调查检查了每个模型的方法和性能,并研究了使用生成AI推进室内设计领域的未来可能性。关键字:生成AI,室内设计,StyleGAN,差异自动编码器(VAE),PIX2PIX,增强学习指数术语:简介,目标,文献调查,方法论,结果和分析,结论

使用ML

使用MLPDF文件第1页

使用MLPDF文件第2页

使用MLPDF文件第3页

使用MLPDF文件第4页

使用MLPDF文件第5页

相关文件推荐

2025 年
¥1.0
2024 年
¥1.0
2023 年
¥3.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2022 年
¥2.0
1900 年
¥18.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2025 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0