Loading...
机构名称:
¥ 2.0

视频生成模型已经证明了产生令人难以置信的单眼视频的功能,但是,3D立体视频的产生仍然不足。我们提出了一种使用现成的单眼视频生成模型的无姿势和无训练方法,用于发电3D立体视频。我们的方法使用估计的视频深度将生成的单眼视频扭曲到立体基线的相机视图中,并采用了一种新型的框架矩阵视频介绍框架。该框架利用视频代理模型来从不同的时间戳和视图中观察到的框架。这种有效的方法会产生一致且具有语义相干的立体视频,而无需场景优化或模型调整。此外,我们开发了一个不合格的边界重新注射方案,该方案通过减轻潜在空间中分离的区域传播的负面影响进一步提高视频介绍的质量。我们通过对包括Sora(Brooks等,2024),Lumiere(Bar-Tal等,2024),Walt(Gupta等,2023)和Zeroscope(Wang等人(Wang et al。,2023A)的视频进行实验来验证我们提出的方法的效率。实验表明我们的方法比以前的方法具有显着改善。项目页面https://daipengwa.github.io/svg_projectpage/

svg:3D立体视频生成...

svg:3D立体视频生成...PDF文件第1页

svg:3D立体视频生成...PDF文件第2页

svg:3D立体视频生成...PDF文件第3页

svg:3D立体视频生成...PDF文件第4页

svg:3D立体视频生成...PDF文件第5页