软件定义的车辆(SDVS)依靠摄像机来智能和关键安全应用,但面临着动态环境噪音(包括天气和遮挡)的挑战。与静态传感器不同,SDV摄像机会遇到受驱动速度影响的噪声模式,这在先前的研究中经常被忽略。为了解决这一差距,我们使用公共数据集,Carla Simulator,机器人车辆和真实车辆的数据对透射噪声影响进行定量分析。我们的发现表明,以低于40 km/h的速度的主要速度可能是确保在嘈杂的城市条件下基于相机的可靠应用程序的门槛。此外,我们提出了Transitnet,这是一种新型模型,旨在减轻传输相机噪声并增强驾驶安全性,尤其是在较高速度下。与多个基线相比,实验结果表明,转运网将F量度提高了5.1%,MAP@50提高了3.6%,并且在所有数据集中将FPS提高了56.7%。我们还提供了广泛测试的详细观察和见解。
主要关键词