从结构特征估算给定动力学过程的结果是网络科学中的关键尚未解决的挑战。与非线性,相关性和复杂系统的结构和动力学之间的反馈相关的困难阻碍了这个目标。在这项工作中,我们开发了一种基于机器学习算法的方法,该方法为理解网络的结构和动态之间的关系提供了重要的一步。,它使我们能够从网络结构中估计疾病的暴发大小,从单个节点开始,以及由库拉莫托振荡器组成的系统的同步性程度。我们显示网络的哪些拓扑特征是此估计的关键,并提供了比以前更高的网络指标的重要性。对于流行病的传播,K核发挥了基本作用,而对于同步,中间性和可及性是与振荡器状态最相关的措施。
主要关键词