摘要 - 在Covid-19期间的确定对世界各地的农业造成了严重影响。作为有效的解决方案之一,基于对象检测的机械收获/自动收获和机器人收割机成为迫切需要。在自动收获系统中,良好的几个射击对象检测模型是瓶颈之一,因为该系统需要处理新的蔬菜/水果类别,并且收集了所有新颖类别的大规模注释数据集的收集。社区开发了许多射击对象检测模型。然而,是否可以直接用于现实生活中的农业应用程序仍然值得怀疑,因为常用的培训数据集与现实生活中农业场景中收集的图像之间存在上下文差距。为此,在这项研究中,我们提出了一个新颖的黄瓜数据集,并提出了两种数据增强策略,有助于弥合上下文差距。实验结果表明,1)最先进的几个射击对象检测模型在新型的“ Cucumber”类别上的性能很差; 2)提出的增强策略的表现优于常用的增强策略。