基于标记数据的抽象深度学习在计算机视觉,语音识别和自然语言处理方面取得了巨大成功。与未标记的数据相比,标记的数据只是海洋中的下降。人们如何有效地利用未标记的数据?研究重点是无监督和半监督的学习来解决此类问题。一些理论和经验研究证明,未标记的数据可以帮助提高对抗性攻击下的概括能力和鲁棒性。但是,关于鲁棒性和未标记数据之间关系的理论研究将其范围限制为玩具数据集。同时,自主驾驶中的视觉模型需要稳健性的良好改善,以确保安全性和安全性。本文提出了一个半监督的学习框架,用于自动驾驶汽车中的对象检测,从而通过未标记的数据提高了鲁棒性。首先,我们建立了一个基线,并通过学习无监督的对比学习方法-Momentum对比度(MOCO)。其次,我们提出了一种半监督的共同训练方法,以标记未标记的数据以进行重新培训,从而改善了对自主驾驶数据集的概括。第三,我们基于搜索算法使用的无监督边界框数据扩展(BBAG)方法,该方法使用增强构层学习来改善对象检测的鲁棒性来进行自动驾驶。我们介绍了一项关于Kitti数据集的实证研究,该数据集采用了多样化的讽刺攻击方法。我们提出的方法在白色框攻击(DPATCH和上下文补丁)和黑盒攻击(高斯噪音,雨水,雾,雾等)下实现了最新的概括和鲁棒性。我们提出的方法和经验研究表明,使用更未标记的数据有益于自主驾驶中感知系统的鲁棒性。
主要关键词