Loading...
机构名称:
¥ 1.0

和技术(A),Rajahmundry,AP,印度。摘要 - 本文集中于开发基于软件的识别模块,该模块与车辆的板载摄像头系统集成在一起。使用OPENCV,系统通过调整,颜色归一化和边缘检测来预处理图像。经过Tensorflow,Keras和Image Data Generator训练的卷积神经网络(CNN),通过增强和预处理流量符号数据集来增强分类精度。一旦确定了流量标志,就可以使用文本到语音转换提供实时语音反馈,从而使驾驶员可以在不分散注意力的情况下接收警报。使用Django构建的后端管理整个管道,确保无缝处理,模型执行和用户交互。结果表明,即使在不同的照明和天气条件下,系统也可以准确识别流量标志,并且可以正确识别并实时宣布交通标志。通过将基于CNN的图像识别与语音反馈相结合,该系统大大改善了驾驶员的帮助,从而使驾驶更安全。索引术语 - 流量标志识别,卷积神经网络(CNN),图像数据生成器,OPENCV,深度学习,实时检测,语音帮助,计算机视觉,机器学习,Django,Tensorflow,Tensorflow,Keras,Keras,驾驶员帮助,道路安全,道路安全。

使用CNN

使用CNNPDF文件第1页

使用CNNPDF文件第2页

使用CNNPDF文件第3页

使用CNNPDF文件第4页

使用CNNPDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2021 年
¥1.0
2024 年
¥1.0
2022 年
¥2.0
1900 年
¥18.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2025 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0