摘要。准确估算工业系统中剩余的使用寿命(RUL)对于优化维护策略和规定资产寿命至关重要。数据驱动的RUL模型利用机器学习(ML)算法从操作数据中提取模式,从而在捕获复杂关系中进行例外。尽管RUL预后模型的进步发展,但机器学习算法的黑盒性质仍为工业用户带来挑战,阻碍了信任和采用。明显的人工智能(XAI)方法通过使复杂的模型透明和可解释来提供有希望的解决方案。本文着重于应用XAI方法来增强对RUL预后的机器学习模型的信任。我们强调对解释机制的定量评估,包括一致性和鲁棒性等指标。我们的研究有助于制定更可信赖和可靠的预测维护策略。我们评估了XAI方法的规定RUL模型,该模型应用于工业型数据的现实情况。我们的发现旨在为工业从业人员提供宝贵的见解,并指导他们选择RUL预后技术。
主要关键词