Loading...
机构名称:
¥ 2.0

大脑刺激有可能创建所需的神经种群活动状态。然而,搜索大量刺激参数的空间是一项挑战,例如,选择用于刺激的电极的子集。在这种情况下,创建一个模型,将刺激参数的配置映射到大脑的响应可能是有益的。训练这样的广泛模型通常需要比给定的实验会议中收集的刺激反应样本更多。此外,随着时间的推移,记录活动的性质的变化可能使其在整个会话之间合并刺激反应样本具有挑战性。为了应对这些挑战,我们提出了Miso(微刺激优化),这是一个闭环刺激框架,通过在较大的刺激参数空间上进行优化,以推动神经种群活动向特定状态。MISO由三个关键组成部分组成:1)一种神经活动对准方法,以合并跨会话的刺激 - 反应样本,2)对合并样品进行训练的统计模型,以预测大脑对未测试刺激参数的响应,以及3)在线优化的ALGORITHM,以对刺激的刺激进行刺激效果,以对刺激进行刺激效果。在这项研究中,我们通过基于因子分析(FA)的对准方法,卷积神经网络(CNN)和Epsilon Greedy优化算法实施了MISO。我们在非人类灵长类动物的前额叶皮层中使用电微刺激测试了闭环实验中的味iso。在CNN预测的指导下,Miso在数千种刺激参数构型中成功搜索,以推动神经种群的活动向指定状态。更广泛地,MISO通过实现多重倍刺刺激参数空间来提高神经调节技术的临床活力。

miso:优化大脑刺激以创建神经种群活动状态

miso:优化大脑刺激以创建神经种群活动状态PDF文件第1页

miso:优化大脑刺激以创建神经种群活动状态PDF文件第2页

miso:优化大脑刺激以创建神经种群活动状态PDF文件第3页

miso:优化大脑刺激以创建神经种群活动状态PDF文件第4页

miso:优化大脑刺激以创建神经种群活动状态PDF文件第5页