Loading...
机构名称:
¥ 1.0

这项研究首先介绍了高斯莱昂纳多多项式序列。我们获得此序列的基本属性,例如生成函数,Binet的公式,矩阵形式。此外,我们使用Leonardo编号研究了编码端解码方法。最后,我们检查了向接收器发送不正确的错误检测和校正。参考文献[1] Bacaer,N。,《数学种群动力学的简短历史》,Springer-Verlag,伦敦,2011年。[2] Horadam,A。F.,《美国数学月刊》,70(3),289,1963。[3] Shannon,C。E.,《贝尔系统技术杂志》,27(3),379,1948。[4] Moharir,P。S.,IETE研究杂志,16(2),140,1970。[5] Basu,M.,Prasad,B.,Chaos,Solitons分形,41(5),2517,2009。[6] Catarino,P。M.,Borges,A.[7] Soykan,Y。,《数学进步研究杂志》,18(4),58,2021。[8]çelemoğlu,ç。[9] Gauss,C.F。,理论残留物biquadraticorum:评论Secunda,典型Dieterichtianis,1832年。[10] Halici,S.,Sinan,O。Z.

高斯leonardo多项式和...

高斯leonardo多项式和...PDF文件第1页

高斯leonardo多项式和...PDF文件第2页

高斯leonardo多项式和...PDF文件第3页

高斯leonardo多项式和...PDF文件第4页

高斯leonardo多项式和...PDF文件第5页

相关文件推荐

2024 年
¥1.0
2025 年
¥1.0
2024 年

...

¥5.0
2024 年
¥1.0
2023 年
¥1.0
2024 年

...

¥1.0
2023 年
¥1.0
2025 年

...

¥1.0
2025 年

...

¥1.0
2024 年
¥8.0
2023 年
¥1.0
2024 年
¥1.0
2024 年

...

¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年

...

¥1.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2024 年

...

¥4.0
2024 年
¥1.0