摘要 - 大型语言模型(LLM)引起了人们的重大关注,因为它们显示出人工通用智能(AGI)的令人惊讶的迹象。人工智能和大型语言模型可用于各种良好目的,例如用于创造知识的数字助手。但是,如此强大的模型也可以具有潜在的风险。除其他问题和风险外,AI模型可以对数据和用户构成的安全和隐私风险。在本文中,我们讨论了多项式和矢量空间等数学结构以及多项式和矩阵矢量函数的隐私保留委派如何用于将计算模型(包括LLMS)转换为隐私保护计算模型。此外,我们重点介绍了一些众所周知的加密结构以及一些可以改进LLM的解决方案,从某种意义上说,它们可以保留数据的隐私和安全性以及用户。总体而言,我们在本文中介绍的隐私性和零知识LLM可能是潜在的解决方案,可以在某种程度上且合理地保留数据和用户的隐私。更重要的是,也许应该对AI模型进行公开可信的数据培训;训练有素的模型应在当地被压缩和使用。索引术语 - 私有的计算,私人多样性计算,隐私提供大语言模式,安全计算,完全同源性加密,Peovacy-Preservice机器学习,零知识范围,零知识模型,可信度的AI,可靠的AI,安全和隐私风险
主要关键词