Loading...
机构名称:
¥ 1.0

对核苷酸三元组到氨基酸的遗传密码的解释是生命的基础。 这种解释是通过细胞TRNA实现的,每个人都通过其互补反密码子(位置34-36)读取三胞胎密码子,同时将充电至其3'端的氨基酸传递。 然后将这种氨基酸掺入核糖体蛋白质合成期间的生长多肽链中。 解释的质量和多功能性不仅可以通过密码子与年代的配对来确保,而且还通过在每个tRNA的位置34和37处的转录后修饰来确保,分别对应于对应于抗构型抗源代码的第一个位置的旋转核苷酸,并相对于抗代支的3''侧。 如何通过匹配的反密码子读取每个密码子,以及需要哪些修改,因此不能单独使用密码子 - 抗议配对来预测。 在这里,我们提供了一个易于访问的修改模式,该模式集成到遗传代码表中。 我们将重点放在革兰氏阴性细菌大肠杆菌作为模型上,这是为数不多的生物之一,其整个tRNA修饰和修饰基因都被鉴定和映射。 这项工作提供了一个重要的参考工具,该工具将促进蛋白质合成研究,这是细胞寿命的核心。对核苷酸三元组到氨基酸的遗传密码的解释是生命的基础。这种解释是通过细胞TRNA实现的,每个人都通过其互补反密码子(位置34-36)读取三胞胎密码子,同时将充电至其3'端的氨基酸传递。然后将这种氨基酸掺入核糖体蛋白质合成期间的生长多肽链中。解释的质量和多功能性不仅可以通过密码子与年代的配对来确保,而且还通过在每个tRNA的位置34和37处的转录后修饰来确保,分别对应于对应于抗构型抗源代码的第一个位置的旋转核苷酸,并相对于抗代支的3''侧。如何通过匹配的反密码子读取每个密码子,以及需要哪些修改,因此不能单独使用密码子 - 抗议配对来预测。在这里,我们提供了一个易于访问的修改模式,该模式集成到遗传代码表中。我们将重点放在革兰氏阴性细菌大肠杆菌作为模型上,这是为数不多的生物之一,其整个tRNA修饰和修饰基因都被鉴定和映射。这项工作提供了一个重要的参考工具,该工具将促进蛋白质合成研究,这是细胞寿命的核心。

促进遗传代码解释的tRNA修饰模式

促进遗传代码解释的tRNA修饰模式PDF文件第1页

促进遗传代码解释的tRNA修饰模式PDF文件第2页

促进遗传代码解释的tRNA修饰模式PDF文件第3页

促进遗传代码解释的tRNA修饰模式PDF文件第4页

促进遗传代码解释的tRNA修饰模式PDF文件第5页

相关文件推荐

1900 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2025 年
¥1.0
2025 年
¥3.0