Loading...
机构名称:
¥ 2.0

大规模 DNA 测序从根本上改变了我们在整个生命科学领域探索疾病生物学机制的能力。基因组技术的可及性正在改变临床上的患者管理,并以越来越大的规模和分辨率推动分子、生物物理和细胞研究。在这里,我们回顾了序列功能研究在全面人类遗传变异集的大规模功能评估中的效用和应用,重点是单核苷酸变异 (SNV)。我们概述了可扩展功能检测设计的基本原理,并提出了选择替代模型系统和实验方法的框架。虽然本综述重点关注基于细胞的 SNV 检测,但相同的原理可能适用于一系列模型系统和遗传变异类型。人类疾病遗传学领域的主要目标是将基因位点与疾病和性状相关的表型联系起来。在最初的人类参考基因组的基础上,研究人员在对遗传变异进行分类方面取得了巨大进展(1、24、101、119、121、191)。大规模人群的基因分型和测序[例如英国生物样本库(25)、All of Us(6)和日本生物样本库(141)],以及个人健康、人口统计和生活方式信息,已帮助将数千个基因位点与人类特征和疾病联系起来,并随着测序人群规模和多样性的增加而继续揭示遗传关联(24、181)。尽管基于人群的研究越来越有能力将常见变异与人类表型联系起来,但它们不适合对罕见和极其罕见的变异进行关联——这些变异占大多数遗传变异,并且往往对疾病表型的影响比常见变异更大(33)。考虑到目前人类群体中几乎存在所有可能的单核苷酸变异(122, 195),即使是最罕见的变异也需要进行功能评估。在这里,大规模的序列功能研究对于通过实验推断变异的影响至关重要。此外,对于常见变异,这些研究可以帮助在数千种常见性状相关单倍型中识别致病变异(61)。展望未来,序列功能研究对于加快评估等位基因频率范围内的遗传变异至关重要,并在此过程中帮助我们了解变异功能障碍的机制。到目前为止,可扩展的变异效应多重分析(MAVE)已经共同探究了数十万种遗传变异的功能后果,涵盖编码元件(18、21、28、50、73、74、77、78、81、88、96、112、124、127、143、173、175、194、196)和非编码元件,例如剪接位点(15、20、72、97、102、197)非翻译信使 RNA(mRNA)区域(163)、启动子(108)和增强子(108、135、148)。这些变异到功能 (V2F) 研究可以生成变异效应 (VE) 图谱,捕捉目标元素内所有可能的替换对功能的影响,包括尚未在人类中观察到的变异的影响。目前,人们正在形成一个共同的愿景,即建立一个涵盖人类基因组中所有功能元素的 VE 图谱 (11)——其关键要求是建立一套协调的可扩展功能检测方法。

用于解释人类遗传变异的可扩展功能检测

用于解释人类遗传变异的可扩展功能检测PDF文件第1页

用于解释人类遗传变异的可扩展功能检测PDF文件第2页

用于解释人类遗传变异的可扩展功能检测PDF文件第3页

用于解释人类遗传变异的可扩展功能检测PDF文件第4页

用于解释人类遗传变异的可扩展功能检测PDF文件第5页

相关文件推荐