我们提出了一种基于神经网络的方法,该方法可计算一个稳定且通用的度量(LSiM)来比较来自各种数值模拟源的数据。我们专注于标量时间相关的二维数据,这些数据通常来自基于运动和传输的偏微分方程(PDE)。我们的方法采用了一种由度量的数学性质驱动的孪生网络架构。我们利用带有 PDE 求解器的可控数据生成设置,在受控环境中从参考模拟中创建越来越不同的输出。我们学习到的度量的一个核心组成部分是一个专门的损失函数,它将关于单个数据样本之间相关性的知识引入训练过程。为了证明所提出的方法优于现有的向量空间度量和其他基于图像的学习到的度量,我们在大量测试数据上评估了不同的方法。此外,我们分析了可调节训练数据难度的泛化优势,并通过对三个真实数据集的评估证明了 LSiM 的稳健性。