对于有偏 Pauli 噪声,Kitaev 表面码的各种实现都表现得出奇的好。受这些潜在收益的吸引,我们研究了通过应用单量子比特 Clifferd 算子从表面码中获得的 Clifferd 变形表面码 (CDSC) 的性能。我们首先分析 3 × 3 方格上的 CDSC,发现根据噪声偏差,它们的逻辑错误率可能会相差几个数量级。为了解释观察到的行为,我们引入了有效距离 d ′ ,它可以缩短为无偏噪声的标准距离。为了研究热力学极限下的 CDSC 性能,我们专注于随机 CDSC。利用量子码的统计力学映射,我们发现了一个相图,该相图描述了在无限偏差下具有 50% 阈值的随机 CDSC 家族。在高阈值区域,我们进一步证明,典型代码实现在有限偏差下优于最著名的平移不变代码的阈值和亚阈值逻辑错误率。我们通过构建属于高性能随机 CDSC 系列的平移不变 CDSC 来证明这些随机 CDSC 系列的实际相关性。我们还表明,我们的平移不变 CDSC 优于众所周知的平移不变 CDSC,例如 XZZX 和 XY 代码。
主要关键词