Loading...
机构名称:
¥ 8.0

直到 20 世纪 50 年代初 DNA 结构被发现后,人们才清楚细胞中的遗传信息是如何编码在 DNA 核苷酸序列中的。自那时起,我们取得了惊人的进展。在 50 年内,我们知道了包括人类在内的许多生物的完整基因组序列。因此,我们知道了生产像我们这样的复杂生物所需的最大信息量。生命所需遗传信息的限制制约了细胞的生化和结构特征,并清楚地表明生物学并不是无限复杂的。在本章中,我们将解释细胞如何解码和使用其基因组中的信息。关于仅有四个“字母”——DNA 中的四种不同核苷酸——的字母表中的遗传指令如何指导细菌、果蝇或人类的形成,人们已经了解了很多。然而,我们仍有许多东西需要探索,比如生物体基因组中存储的信息如何产生具有 500 个基因的最简单的单细胞细菌,更不用说它如何指导具有大约 25,000 个基因的人类的发育。我们仍有许多未知之处,因此,许多令人着迷的挑战等待着下一代细胞生物学家。通过研究果蝇(Drosophila melanogaster)的一小部分基因组,我们可以了解细胞在解码基因组时面临的问题(图 6-1)。该基因组和其他基因组中存在的许多 DNA 编码信息指定了生物体制造的每种蛋白质的线性顺序(即氨基酸序列)。如第 3 章所述,氨基酸序列反过来决定了每种蛋白质如何折叠以产生具有独特形状和化学性质的分子。当细胞制造特定蛋白质时,它必须准确解码基因组的相应区域。基因组 DNA 中编码的其他信息精确地指定了生物体生命中的每个基因将在何时以及在哪种细胞类型中表达为蛋白质。由于蛋白质是细胞的主要成分,基因组的解码不仅决定了细胞的大小、形状、生化特性和行为,还决定了地球上每个物种的独特特征。人们可能已经预测到,基因组中存在的信息将以有序的方式排列,类似于字典或电话簿。尽管某些细菌的基因组似乎组织得相当好,但大多数多细胞生物(例如我们的果蝇示例)的基因组却出奇地混乱。小段编码 DNA(即编码蛋白质的 DNA)散布在大段看似毫无意义的 DNA 中。基因组的某些部分包含许多基因,而其他部分则完全没有基因。在细胞中彼此密切协作的蛋白质通常将其基因位于不同的染色体上,相邻基因通常编码细胞内彼此关系不大的蛋白质。因此,解码基因组并非易事。即使借助强大的计算机,研究人员仍然很难在复杂基因组的 DNA 序列中明确定位基因的起始和终止位置,更不用说预测每个基因在生物体生命中何时表达。尽管人类基因组的 DNA 序列是已知的,但识别每个基因并确定其产生的蛋白质的精确氨基酸序列可能至少需要十年时间。然而,我们体内的细胞每秒都会进行数千次这样的操作。

细胞如何读取基因组:从 DNA 到蛋白质

细胞如何读取基因组:从 DNA 到蛋白质PDF文件第1页

细胞如何读取基因组:从 DNA 到蛋白质PDF文件第2页

细胞如何读取基因组:从 DNA 到蛋白质PDF文件第3页

细胞如何读取基因组:从 DNA 到蛋白质PDF文件第4页

细胞如何读取基因组:从 DNA 到蛋白质PDF文件第5页

相关文件推荐

2024 年
¥1.0
2025 年
¥1.0
2021 年
¥1.0
2017 年
¥1.0