在人类大脑映射之初,功能解剖学的两个原理支撑了大多数分布式大脑反应的概念和分析:即功能分离和整合。目前有两种主要方法来表征功能整合。第一种是从定向有效连接的角度对连接组学进行机械建模,它介导神经元信息传递和神经回路的动态。第二种现象学方法通常从内在大脑网络、自组织临界性、动态不稳定性等方面来表征无向功能连接(即可测量的相关性)。本文介绍了一种有效连接的处理方法,它说明了内在大脑网络和临界动力学的出现。它以马尔可夫毯的概念为基础,马尔可夫毯在远离平衡系统的自组织中起着根本性的作用。利用重正化群的装置,我们表明,网络神经科学中发现的大部分现象学是神经元状态的特定分区在逐渐粗化的尺度上出现的属性。因此,它提供了一种将有向图上的动态与内在脑网络现象学联系起来的方法。
主要关键词