注解。阻碍社会经济领域向创新方向发展的难题之一是,在将人工智能(AI)引入社会经济进程的框架内,机器学习所使用的方法和方法缺乏结构化。同样的问题阻碍了创新发展速度的增长,从而阻碍了国家科技水平的提高。文章对机器学习的各个方面进行了分类和系统化,重点强调需要加快构建和实施作为人工智能基础的算法,以提高管理社会经济过程的效率。为了实现这一目标,我们介绍了机器学习和人工智能概念的分析结果、有关人工智能实施方法和方法的分析材料的研究以及其在社会经济过程中的应用前景。机器学习在人工智能实施中的方法是根据历史时期、人工智能实施领域等进行系统化的,并根据机器训练的方法、构建人工智能算法的数据预测模型(例如概率)以及使用这种技术的研究的想法或性质(评估和收集统计指标、开展分析工作)对方法进行分类。对机器学习和人工智能构建相关材料的研究使我们得出以下结论。以数学和统计方法形式呈现的理论基础作为在机器学习框架内构建人工智能算法的基础,是教授计算机人类素质过程的必要组成部分。然而,关于机器学习的方法和途径的信息主要是分散的,有必要形成统一的方法论基础,以简化寻找创建人工智能解决任何社会、经济或其他问题的必要方法的阶段。这种基础的存在将创造机会,在不同的活动领域和社会经济过程用一种机器学习方法取代另一种方法来创建人工智能。
主要关键词