药物开发过程是制药行业的一大挑战,因为开发一种新药需要耗费大量的时间和金钱。一种广泛使用的减少药物开发过程成本和时间的方法是计算机辅助药物设计 (CADD)。CADD 可以更好地专注于实验,从而减少研究新药所需的时间和成本。在这种情况下,基于结构的虚拟筛选 (SBVS) 是稳健且有用的,也是药物设计最有前途的计算机模拟技术之一。SBVS 试图预测两种分子之间形成稳定复合物的最佳相互作用模式,并使用评分函数来估计配体和分子靶标之间非共价相互作用的力。因此,评分函数是 SBVS 软件成功或失败的主要原因。许多软件程序都用于执行 SBVS,由于它们使用不同的算法,因此使用相同的输入可能会从不同的软件获得不同的结果。在过去十年中,一些研究使用了一种称为共识虚拟筛选 (CVS) 的 SBVS 新技术来提高 SBVS 的准确性并减少在这些实验中获得的假阳性。能够利用 SBVS 的必不可少的条件是目标蛋白质的 3D 结构。已经创建了一些虚拟数据库,例如蛋白质数据库,用于存储分子的 3D 结构。但是,有时无法通过实验获得 3D 结构。在这种情况下,同源性建模方法可以根据蛋白质的氨基酸序列预测其 3D 结构。本综述概述了使用 CADD 执行 SBVS 所涉及的挑战、CADD 工具支持 SBVS 的领域、最常用工具之间的比较以及当前用于减少药物开发过程中的时间和成本的技术。最后,最终考虑证明了在药物开发过程中使用 SBVS 的重要性。
主要关键词