摘要。本文介绍了 AdaptiveSGA,这是一种通过 Symbiotic Game Agent 框架通过自适应游戏 AI 实现动态难度扩展的模型。在现代计算机游戏中使用动态难度平衡对于提高游戏的娱乐价值非常有用。此外,Symbiotic Game Agent 作为一个框架,为游戏代理提供了灵活性和稳健性作为设计原则。本文介绍的工作利用了自适应游戏 AI 和 Symbiotic Game Agent 的优势,实现了一个稳健、高效且可测试的游戏难度扩展模型。本文详细讨论了该模型,并将其与原始的 Symbiotic Game Agent 架构进行了比较。最后,本文描述了它如何应用于模拟足球。最后,简要分析了实验结果,表明实现了动态难度平衡。
主要关键词