Loading...
机构名称:
¥ 1.0

理由和目标:准确确定宫颈癌和甲状腺癌的诊断和分期对于确定肿瘤的扩散和播散在医疗实践中至关重要,并且涉及最准确和有效的治疗方法。为了准确诊断和分期宫颈癌和甲状腺癌,我们旨在创建一种诊断方法,该方法通过人工智能算法优化,并通过进行临床试验获得准确和有利的结果进行验证,在此期间,我们将使用人工智能 (AI) 算法优化的诊断方法,以避免错误,提高医生对计算机断层扫描 (CT) 扫描、核磁共振成像 (MRI) 的解释理解并改善治疗计划。材料和方法:计算机辅助诊断 (CAD) 方法的优化将包括开发和形成人工智能模型,使用分段体积构造中使用的算法和工具从 MRI/CT 生成 3D 图像。我们提议通过体积渲染技术对“DICOM”图像处理的最新发展进行比较研究,使用传递函数来表示不透明度和颜色,以及在三维空间中投影的“DICOM”图像的灰度。我们还通过生成对抗网络 (GAN) 技术使用人工智能 (AI),该技术已被证明

人工智能在分段体积上的应用

人工智能在分段体积上的应用PDF文件第1页

人工智能在分段体积上的应用PDF文件第2页

人工智能在分段体积上的应用PDF文件第3页

人工智能在分段体积上的应用PDF文件第4页

人工智能在分段体积上的应用PDF文件第5页