量子计算利用叠加和纠缠的原理,允许量子比特或量子位同时存在于多个状态中。这一特性使量子计算机能够以比传统计算机快得多的速度处理特定任务的数据,包括分解大数和解决复杂的优化问题。量子霸权的前景促使全球开展大量研究和开发工作,企业和研究机构竞相构建现实的量子处理器。尽管量子计算具有巨大的潜力,但要在现实应用中实现其优势仍需要克服艰巨的挑战。最大的障碍之一在于建立量子和经典结构之间的持续接口。量子处理器在敏感的量子王国中运行,必须与经典加法器进行通信,而不会损害量子数据的完整性。这种复杂的交互需要一种先进的 VLSI 架构,能够促进有效通信、最大限度地减少错误并优化量子-经典混合系统的整体性能。在量子计算接口的背景下混合 VLSI 需要摆脱传统策略。经典计算机遵循确定性原则,而量子结构则以概率方式运行,引入不确定性并要求同步条件。由于量子处理器产生具有固有概率不确定性的结果,VLSI 结构必须提供纠错机制和容错设计,以保持量子计算的可靠性。此外,经典和量子处理器之间的工作条件差异带来了额外的复杂性。量子处理器通常在极低的温度下工作以保持敏感量子态,而经典组件则在室温下工作。设计 VLSI 架构以促进绿色通信和跨这些温度梯度的数据传输需要创新的工程解决方案。在开发用于量子计算接口的 VLSI 架构的过程中,研究人员正在努力设计可扩展和模块化结构。量子处理器面临可扩展性挑战的风险,而 VLSI 在解决这些问题方面发挥着关键作用。可扩展架构的开发对于了解量子计算在解决实际问题方面的全部能力至关重要。尽管存在这些挑战,但目前量子计算接口 VLSI 架构的改进已取得显著进展。研究人员探索了各种策略,从集成到经典系统中的专用量子协处理器,到利用经典处理器完成精确任务同时将量子计算委托给专用处理器的混合架构。这些努力聚焦于不断发展的量子经典集成全景,其中 VLSI 架构是实现绿色和可扩展解决方案的关键。
主要关键词