卷积神经网络(CNN)是一类机器学习模型,主要用于计算机视觉任务,可以通过从经验中学习来实现类似人类的性能。它们与灵长类动物视觉系统的结构和功能原理的惊人相似之处,可以比较这些人工网络及其生物学对应物,从而探索了视觉功能和神经表示如何与有限的计算原理中的真实大脑中出现。在考虑了CNN的基本特征后,我们将讨论认可CNN的机遇和挑战,如灵长类动物视觉系统的硅模型。特别是,我们突出了有关视觉系统的解剖学和生理特性的几个新兴概念,这些概念仍然需要系统地集成到当前的CNN模型中。这些原则包括从视网膜输入的早期阶段实施并行处理途径,以及关于信息流的序列进程的几个假设的重新考虑。我们建议设计选择和建筑约束,可以促进与生物学更紧密保持一致性,这为人工和生物学视觉系统之间的预测联系提供了因果证据。采用这种原则的观点可能会导致CNN的新研究问题和应用,而不是建模对象识别。
主要关键词