对于学术和行业研究,自1980年代以计算机视觉为中心的系统的引入以来,AV技术已经取得了令人难以置信的进步[3]。在这里,本文将为自动驾驶汽车提供一些正式的定义。根据自动化水平,SAE国际自动驾驶汽车定义为六个不同的级别,其中0级没有AU量,并且5级是完全驾驶自动化[6]。尽管AV研究是一个经过充分探索的领域,但仍然没有5级或完全自主的车辆。这在很大程度上是由于计算机视觉系统的缺陷以及需要人类驾驶员存在的更复杂驾驶任务的复杂性。对于安全至关重要的系统,例如AV系统,无法造成小错误。为此,重要的是,AV系统可以根据对周围环境的准确解释做出安全有理的决策。在AV系统的感知端有几种技术,例如光检测和射程(LIDAR)系统和基于摄像机的系统。这些系统与深度学习技术(例如卷积神经网络(CNN))相结合,这些技术用于对传感器数据进行分类[14]。但是,像所有机器学习系统一样,由于噪声,训练数据之外的场景,传感设备的退化以及其他外部因素,误导始终可能发生错误分类。Kahneman在2011年提出的两种系统思维类型[11]。第一个是“系统1”,它是快速,本能和情感思维。因此,AV系统应朝着使用混合AI系统或将深度学习与逻辑推理结合的AI迈进,以帮助减轻完全基于深度学习的方法的失败和缺点。第二个是“系统2”,它是缓慢,有意和逻辑的。对于人类驾驶员,我们在驾驶场景中使用这两个系统。使用System 1 Thinking迅速完成我们周围的对象,并进行较小的驾驶操作。但是,当我们遇到一个不熟悉或危险的情况时,我们使用系统2思考来确定一种安全的方式来驾驶这种情况。在最佳的混合AV系统中,快速系统的1个任务(例如感知和分类)应通过深度学习来处理,而缓慢的系统2任务应通过综合推理来处理。推理系统也可以用于对
主要关键词