Loading...
机构名称:
¥ 4.0

博弈论是研究冲突与合作的分析框架。早期的研究工作受到赌博和国际象棋等娱乐游戏的启发,因此博弈论中出现了“博弈”一词。但很快人们就发现,该框架的应用范围要广泛得多。如今,博弈论已用于许多学科的数学建模,包括许多社会科学、计算机科学和进化生物学。在这里,我主要从经济学中举出例子。这些笔记是对一种称为战略形式博弈(也称为标准形式博弈)的数学形式主义的介绍。目前,将战略形式博弈视为代表一种非时间互动:每个玩家(用博弈论的语言)在不知道其他玩家做了什么的情况下采取行动。一个例子是双人游戏石头剪刀布的单个实例(您可能已经很熟悉,但将在下一节中讨论)。在配套笔记《博弈论基础 II:扩展形式博弈》中,我开发了一种称为扩展形式博弈的替代形式主义。扩展形式博弈明确地捕捉了时间因素,比如在标准国际象棋中,玩家按顺序移动,并且每个玩家都知道游戏中之前的动作。如我在扩展形式博弈的笔记中所讨论的,有一种自然的方式可以为任何扩展形式博弈提供战略形式表示。还有第三种形式,称为联盟形式博弈(也称为特征函数形式)。联盟形式抽象了个体玩家行为的细节,而是关注物理上可能的收益分配,既适用于所有玩家一起,也适用于每个玩家子集(联盟)。我(目前)没有关于联盟形式博弈的笔记。Osborne (2008) 是一篇关于战略和扩展形式博弈研究的简短入门文章。Gibbons (1992) 是博弈论的标准本科教材,我经常在自己的课程中使用。其他选择包括 Osborne (2003)、Watson (2013) 和 Tadelis (2013)。标准的研究生博弈论教材是 Fudenberg 和 Tirole (1991)。我还推荐 Myerson (1991)、Osborne 和 Rubinstein (1994) 和 Mailath (2019)。研究生微观经济理论教材中也有关于博弈论的很好的介绍,例如 Kreps (1990)、Mas-Colell

博弈论基础 I:战略形式游戏 1 - CDN

博弈论基础 I:战略形式游戏 1 - CDNPDF文件第1页

博弈论基础 I:战略形式游戏 1 - CDNPDF文件第2页

博弈论基础 I:战略形式游戏 1 - CDNPDF文件第3页

博弈论基础 I:战略形式游戏 1 - CDNPDF文件第4页

博弈论基础 I:战略形式游戏 1 - CDNPDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2021 年
¥3.0
2020 年
¥1.0
2021 年
¥1.0
2022 年
¥1.0
2023 年
¥1.0