Loading...
机构名称:
¥ 2.0

早期训练,可用于增强/虚拟现实的exoskele-tons,假肢和交互式系统。[1–9] The continuous operation of these systems is juxtaposed with the reliable and sus- tainable energy sources, currently met through: a) energy harvesters based on mechanisms such as photovoltaics, [10–13] piezoelectricity, [14–16] triboelectricity, [14,17–19] and theremoelectricity, [20–22] etc.; b)诸如锂离子电池(LIB)[23-27]和超级电容器(SCS),[28-35]等的储能设备等。; c)延长电池寿命的低功率或附近的州外电子设备和算法,[36,37]等。(图1 A)。改编这些技术,各种可穿戴的物理,化学,生物和光学传感器,[3,33,38-43]近年来报告为自供电或能量自动造型,[15,33,44-47]可以依靠能量代理,[21,33,48–51] ElectroCeest(21,48–51] ElectroChemical(Elephemical), [3,26,31–35,44,52,53,55-57]无线功率技术,[58–60]自动力传感器,[15,33,44-47]和结合能量生成器和EES的混合能源系统。[61]几篇评论文章详细介绍了这些技术,[47,62-68]在各自的主题中,例如自供电的Bioseners,[69]自动医疗传感器,[70]基于酶的体内设备,[71]和其他环境技术。[72]然而,很少有人关注生物相容性,安全性和潜在的环境影响这种能源自治系统,这是一个引起人们越来越多的利益的话题。许多当前的能量设备都使用有毒的材料和电解质,因为佩戴这些设备的个人的安全至关重要。使用可穿戴技术的激增以及同时朝零废物,可持续的信息和通信技术以及电子废物回收的同时推动,要求使用可持续材料来满足未来的能源需求。[73–75]在磨损的情况下,还有其他关于生物相容性的要求,以及允许可穿戴能力的新型形式(例如,伸展能力,灵活性,可洗)。例如,包括钴和镍以及易燃电解质(LIBF 4,LIPF 6,LICLO 4)在内的重金属的存在会引起毒性和污染。fur,在有机溶液和电极表面的反应过程中产生热量,这对磨损是有害的。[76]在这方面,由于其丰富的成分(图1b)用于能量发电的新方法,[40,77]储能,[35,78,79]和感应[80-82](图1C)被认为是非常有吸引力的,因为它们的整合可能会导致完全的能量能量磨损系统。本评论文章介绍了基于汗液的设备的详细分析

基于自主汗的可穿戴系统

基于自主汗的可穿戴系统PDF文件第1页

基于自主汗的可穿戴系统PDF文件第2页

基于自主汗的可穿戴系统PDF文件第3页

基于自主汗的可穿戴系统PDF文件第4页

基于自主汗的可穿戴系统PDF文件第5页

相关文件推荐

2023 年
¥3.0
2020 年
¥1.0
2025 年
¥2.0
2009 年
¥3.0
2009 年
¥3.0
2009 年
¥3.0
2009 年
¥3.0
2022 年
¥9.0
2009 年
¥3.0
2025 年
¥1.0
2024 年
¥18.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2020 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2012 年
¥1.0
2023 年
¥1.0
2024 年
¥2.0
2022 年
¥1.0
2025 年
¥3.0
2024 年
¥1.0
2023 年
¥2.0
2021 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0