摘要背景:脑肿瘤细分在诊断和治疗计划方面有很大贡献。手动脑肿瘤描述是一项耗时且乏味的任务,并且根据放射科医生的技能而有所不同。自动化的脑肿瘤分割非常重要,并且不依赖于观察间或观察到。这项研究的目的是使从流体累积的反转恢复(FLAIR),T1加权(T1W),T2加权(T2W)和T1W对比(T1W对比度(T1CE)对比(T1CE)磁性结合(MR)序列的最高准确性或在MR上的组合,从而使MR的最高序列或pocorm pocol to pocol to pocol to pocol compoy 其中。 方法:Brats −2020挑战数据集,包含370名具有四个MR序列和手动描绘的肿瘤口罩的受试者,用于训练残留的神经网络。 该网络是针对每个MR序列(单通道输入)及其任何组合(双或多通道输入)分别训练和评估的。 结果:单通道模型的定量评估表明,与其0.77±0.10骰子指数相比,天赋序列将产生更高的分割精度。 考虑到双通道模型,具有FLAIR和T2W输入的模型产生了0.80±0.10骰子指数,表现出更高的性能。 整个四个MR序列的关节肿瘤分割均具有0.82±0.09骰子指数的最高总体分割精度。其中。 方法:Brats −2020挑战数据集,包含370名具有四个MR序列和手动描绘的肿瘤口罩的受试者,用于训练残留的神经网络。 该网络是针对每个MR序列(单通道输入)及其任何组合(双或多通道输入)分别训练和评估的。 结果:单通道模型的定量评估表明,与其0.77±0.10骰子指数相比,天赋序列将产生更高的分割精度。 考虑到双通道模型,具有FLAIR和T2W输入的模型产生了0.80±0.10骰子指数,表现出更高的性能。 整个四个MR序列的关节肿瘤分割均具有0.82±0.09骰子指数的最高总体分割精度。其中。 方法:Brats −2020挑战数据集,包含370名具有四个MR序列和手动描绘的肿瘤口罩的受试者,用于训练残留的神经网络。 该网络是针对每个MR序列(单通道输入)及其任何组合(双或多通道输入)分别训练和评估的。 结果:单通道模型的定量评估表明,与其0.77±0.10骰子指数相比,天赋序列将产生更高的分割精度。 考虑到双通道模型,具有FLAIR和T2W输入的模型产生了0.80±0.10骰子指数,表现出更高的性能。 整个四个MR序列的关节肿瘤分割均具有0.82±0.09骰子指数的最高总体分割精度。其中。 方法:Brats −2020挑战数据集,包含370名具有四个MR序列和手动描绘的肿瘤口罩的受试者,用于训练残留的神经网络。 该网络是针对每个MR序列(单通道输入)及其任何组合(双或多通道输入)分别训练和评估的。 结果:单通道模型的定量评估表明,与其0.77±0.10骰子指数相比,天赋序列将产生更高的分割精度。 考虑到双通道模型,具有FLAIR和T2W输入的模型产生了0.80±0.10骰子指数,表现出更高的性能。 整个四个MR序列的关节肿瘤分割均具有0.82±0.09骰子指数的最高总体分割精度。其中。方法:Brats −2020挑战数据集,包含370名具有四个MR序列和手动描绘的肿瘤口罩的受试者,用于训练残留的神经网络。该网络是针对每个MR序列(单通道输入)及其任何组合(双或多通道输入)分别训练和评估的。结果:单通道模型的定量评估表明,与其0.77±0.10骰子指数相比,天赋序列将产生更高的分割精度。考虑到双通道模型,具有FLAIR和T2W输入的模型产生了0.80±0.10骰子指数,表现出更高的性能。整个四个MR序列的关节肿瘤分割均具有0.82±0.09骰子指数的最高总体分割精度。结论:FLAIR MR序列被认为是单个MR序列上肿瘤分割的最佳选择,而整个四个MR序列的关节分割将产生较高的肿瘤描述准确性。
主要关键词