Loading...
机构名称:
¥ 1.0

神经形态(脑启发)计算技术一直引起了研究人员的关注。最近,这种兴趣已经扩展到了商业领域,IBM和英特尔等主要工业参与者探索了技术,以及将神经形态解决方案商业化的启动公司,例如在低功率边缘系统中推断应用程序,通过到GPU的数据中心规模的替代方案,用于大型语言模型的GPU替代方案。随着这种商业兴趣的日益增长的重要性,能够比较和对比替代神经形态产品的优势和劣势,范围从米德(Mead)通过新颖的设备技术(例如,诸如Memristors)(例如,诸如MEAD)提供了基于内在的数字技术和大型数字技术的新型设备技术(例如,通过新颖的设备技术)提供的新型设备技术(例如,通过新型设备技术)偏爱米德(Mead)的开创性工作的替代性和缺点。这种比较需要基准作为比较的基础,但是当前神经形态技术的纯粹多样性为前瞻性基准带来了困难。这个重点问题旨在汇集一些关于神经形态基准测试的一些早期思考。这有各种形式,包括比较在两个不同的神经形态平台上的相同应用程序,并查看哪些应用显示出比常规解决方案具有神经形态优势。收集的论文代表了关于神经形态基准挑战的早期观点,但它们与此事的最后一句话相去甚远 - 在这里还有很多事情要做!

专注于神经形态计算的基准

专注于神经形态计算的基准PDF文件第1页

专注于神经形态计算的基准PDF文件第2页

专注于神经形态计算的基准PDF文件第3页