CRISPR/Cas9 系统天然存在于细菌和古细菌免疫系统中 [ 1 ] ;然而,它已被改造用于真核生物,成为获得诺贝尔奖的基因组编辑系统 [ 2,3 ] 。CRISPR/Cas9 系统使用 gRNA 将 Cas9 核酸酶引导至 NGG 原型间隔区相邻基序序列附近的特定靶标。然后,Cas9 切割 DNA,细胞的天然 DNA 损伤修复机制修复双链断裂。在 CRISPR/Cas9 编辑过程中,用于敲除和修饰靶基因的两种主要修复途径是非同源末端连接 (NHEJ) 和同源定向修复途径。当供体 DNA 模板不可用时,NHEJ 是修复双链断裂的主要选择,这使其成为 CRIPSR/Cas9 敲除实验的一个不错选择。核苷酸的丢失和获得是 NHEJ 介导的修复过程中的常见现象,而敲除则来自编码序列的移动。同源定向修复基于供体 DNA 模板的可用性,主要用于编码或非编码序列中的定制基因修饰 [4,5]。CRISPR/Cas9 系统越来越多地用于高级疗法,包括细胞和基因疗法,前景广阔(例如,用于治疗镰状细胞病的 CRISPR 测试)[6,7]。许多用于实现 CRISPR/Cas9 核酸酶 RNA 引导的基因组编辑的商业产品可通过多种递送方式获得。这些产品包括病毒、质粒、mRNA 和 RNP 中编码的 DNA。此外,CRISPR gRNA 可以分为两部分递送,即 crRNA 和 tracrRNA,或作为 sgRNA。多种细菌物种提供 CAS 蛋白选择;常用的一种是化脓性链球菌 Cas9。同样,这些分子进入细胞的方式也有很多,包括病毒载体(如慢病毒和腺相关病毒载体)和化学方法(如脂质、注射和电穿孔)[8,9]。尽管 CRISPR/Cas9 是一种令人兴奋的基因组编辑工具,但在使用 CRISPR/Cas9 编辑细胞后,关于基因组和表型稳定性的纵向数据有限。目前有几份报告提供的证据表明,CRISPR/Cas9 编辑还可能带来其他意想不到的长期变化[10–12]。此外,在选择编辑的细胞亚群时可能会出现遗传瓶颈。因此,对用于细胞和基因疗法等高级疗法的编辑细胞进行表征至关重要,因为这种疗法通常涉及给患者施用编辑过的细胞群[13]。
主要关键词