人工智能和神经形态计算的光子学
机构名称:
¥ 2.0

用于人工智能和神经形态计算的光子学 1 2 Bhavin J. Shastri a,b,g,h , Alexander N. Tait c,b,g,h , Thomas Ferreira de Lima b , Wolfram HP Pernice d , Harish 3 Bhaskaran e , C. David Wright f , Paul R. Prucnal b 4 5 a 加拿大皇后大学物理、工程物理与天文学系,加拿大安大略省金斯顿 KL7 3N6 6 b 普林斯顿大学电气工程系,美国新泽西州普林斯顿 08544 7 c 美国国家标准与技术研究所应用物理部,美国科罗拉多州博尔德 80305 8 d 德国明斯特大学物理研究所,德国明斯特 48149 9 e 牛津大学材料系,英国牛津 OX1 3PH 10 f 埃克塞特大学工程系,埃克塞特 EX4 4QF,英国 11 g 这些作者对本文做出了同等贡献。 12 h shastri@ieee.org;alexander.tait@nist.gov 13 14 由于光子集成平台上光电元件的激增,光子计算研究蓬勃发展。光子集成电路已经实现了超快的人工神经网络,为新型信息处理机器提供了框架。在这种硬件上运行的算法有可能满足医疗诊断、电信、高性能和科学计算等领域对机器学习和人工智能日益增长的需求。与此同时,神经形态电子学的发展凸显了该领域的挑战,特别是与处理器延迟相关的挑战。神经形态光子学提供亚纳秒级的延迟,为扩展人工智能领域提供了互补机会。在这里,我们回顾了集成光子神经形态系统的最新进展,讨论了当前和未来的挑战,并概述了应对这些挑战所需的科学和技术进步。 25 26 传统计算机围绕集中式处理架构(即具有中央处理器 27 和内存)组织,适合运行顺序、数字、基于过程的程序。这种架构对于分布式、大规模并行和自适应的计算模型效率低下,最明显的是用于人工智能 (AI) 中神经网络的计算模型。人工智能试图在这些对传统计算机来说具有挑战性但对人类来说很容易的任务上接近人类水平的准确度。基于神经网络的机器学习 (ML) 算法已经取得了重大成就 [ 1 ],它以分布式 32 方式处理信息并适应过去的输入,而不是由程序员明确设计。机器学习已经影响了我们生活的许多方面,其应用范围从翻译语言 [ 2 ] 到癌症诊断 [ 3 ]。神经形态工程在一定程度上试图将机器学习和人工智能算法的元素转移到能反映其大规模分布特性的硬件上。将硬件与算法相匹配可能会使信息处理速度更快、更节能。神经形态硬件也适用于机器学习之外的问题,例如机器人控制、数学规划和神经科学假设检验 [4,5]。与其他计算机架构相比,大规模分布式硬件在很大程度上依赖于集中元件(即神经元)之间的大规模并行互连。每个连接都专用的金属线是不切实际的。因此,当前最先进的神经形态电子设备使用某种形式的时分复用的共享数字通信总线,用带宽换取互连 [4]。光互连可以消除这种权衡,从而有可能加速机器学习和神经形态计算。 43 44 光已成为电信和数据中心的通信媒介,但在信息处理和计算领域尚未得到广泛应用。光电元件在通信方面表现出色,但其特性与数字门的要求却相矛盾 [6]。然而,非数字计算模型(如神经网络)更适合在光子学中实现。神经形态光子处理器的目标不应是取代传统计算机,而应实现传统计算技术目前无法实现的应用,特别是那些需要低延迟、高带宽和低能耗的应用 [7]。超快神经网络的应用示例包括:51 52 • 实现基础物理学的突破:量子比特读出分类 [ 8 ]、高能粒子碰撞 53 分类 [ 9 , 10 ]、聚变反应堆等离子体控制 [ 11 ] 54 • 非线性规划:解决非线性优化问题(机器人、自动驾驶汽车、预测 55 控制)[ 12 ] 和偏微分方程 [ 13 ] 5643 44 光已成为电信和数据中心的通信媒介,但在信息处理和计算领域尚未得到广泛应用。光电元件在通信方面表现出色,但其特性与数字门的要求却相矛盾 [6]。然而,非数字计算模型(如神经网络)更适合在光子学中实现。神经形态光子处理器的目标不应是取代传统计算机,而应实现传统计算技术目前无法实现的应用,特别是那些需要低延迟、高带宽和低能耗的应用 [7]。超快神经网络的应用示例包括:51 52 • 实现基础物理学的突破:量子比特读出分类 [ 8 ]、高能粒子碰撞 53 分类 [ 9 , 10 ]、聚变反应堆等离子体控制 [ 11 ] 54 • 非线性规划:解决非线性优化问题(机器人、自动驾驶汽车、预测 55 控制)[ 12 ] 和偏微分方程 [ 13 ] 5643 44 光已成为电信和数据中心的通信媒介,但在信息处理和计算领域尚未得到广泛应用。光电元件在通信方面表现出色,但其特性与数字门的要求却相矛盾 [6]。然而,非数字计算模型(如神经网络)更适合在光子学中实现。神经形态光子处理器的目标不应是取代传统计算机,而应实现传统计算技术目前无法实现的应用,特别是那些需要低延迟、高带宽和低能耗的应用 [7]。超快神经网络的应用示例包括:51 52 • 实现基础物理学的突破:量子比特读出分类 [ 8 ]、高能粒子碰撞 53 分类 [ 9 , 10 ]、聚变反应堆等离子体控制 [ 11 ] 54 • 非线性规划:解决非线性优化问题(机器人、自动驾驶汽车、预测 55 控制)[ 12 ] 和偏微分方程 [ 13 ] 56

人工智能和神经形态计算的光子学

人工智能和神经形态计算的光子学PDF文件第1页

人工智能和神经形态计算的光子学PDF文件第2页

人工智能和神经形态计算的光子学PDF文件第3页

人工智能和神经形态计算的光子学PDF文件第4页

人工智能和神经形态计算的光子学PDF文件第5页

相关文件推荐

什么是人工智能?
2025 年
¥11.0
人工智能
2022 年
¥31.0
人工智能
2024 年
¥1.0
人工智能
2017 年
¥2.0
人工智能
2020 年
¥1.0