摘要 在本综述中,我们概述了过去六年(2015-2021 年)与 ADME(吸收、分布、代谢和排泄)和毒性终点相关的机器学习驱动分类研究领域的最新趋势。该研究仅关注具有大型数据集(即超过一千种化合物)的分类模型。针对九个不同的目标进行了全面的文献检索和荟萃分析:hERG 介导的心脏毒性、血脑屏障穿透、通透性糖蛋白 (P-gp) 底物/抑制剂、细胞色素 P450 酶家族、急性口服毒性、致突变性、致癌性、呼吸毒性和刺激/腐蚀。最佳分类模型的比较旨在揭示机器学习算法和建模类型、端点特定性能、数据集大小和不同验证协议之间的差异。根据对数据的评估,我们可以说基于树的算法(仍然)占据主导地位,共识建模在药物安全性预测中正成为一种日益增长的趋势。尽管人们已经可以找到对 hERG 介导的心脏毒性和细胞色素 P450 酶家族同工酶表现出色的分类模型,但这些目标仍然是 ADMET 相关研究工作的核心。
主要关键词