在一个现在被称为“Merkle 谜题”的课程项目中,Merkle [Mer74] 使用理想哈希函数提出了第一个双方之间非平凡的密钥协商协议。可以在随机预言模型 (ROM) 中对该协议进行形式化分析,以证明 Alice 和 Bob 可以向随机预言 h 提出 d 次查询并就密钥达成一致,而窃听者 Eve 可以看到交换的消息 t,需要对 h 进行 Ω(d2) 次查询才能找到密钥。不久之后,开创性的作品 [DH76、RSA78] 展示了如何依靠数论假设实现超多项式安全的密钥协商协议。相比之下,Merkle 的协议仅提供多项式安全性。然而,经过多年的研究和新开发的公钥加密和密钥协商候选构造(有关此类工作请参阅综述 [ Bar17 ]),Merkle 协议具有质量优势:它仅依赖于理想化的对称原语,即没有任何结构的随机函数。事实上,将公钥加密或密钥协商基于对称密钥原语仍然是密码学中最基本的悬而未决的问题之一。Merkle 协议引出了以下自然问题([ IR89 ] 也将其归功于 Merkle)。ROM 中是否存在任何具有更大安全性 ω ( d 2 ) 的 d 查询密钥协商协议,或者 O ( d 2 ) 界限是否最佳?1