Loading...
机构名称:
¥ 1.0

软件开发是一个持续、渐进的过程。开发人员不断以小批量而非一次性大批量的方式改进软件。小批量的高频率使得使用有效的测试方法在有限的测试时间内检测出错误变得至关重要。为此,研究人员提出了定向灰盒模糊测试 (DGF),旨在生成针对某些目标站点进行压力测试的测试用例。与旨在最大化整个程序的代码覆盖率的基于覆盖范围的灰盒模糊测试 (CGF) 不同,DGF 的目标是覆盖潜在的错误代码区域(例如,最近修改的程序区域)。虽然先前的研究改进了 DGF 的几个方面(例如电源调度、输入优先级和目标选择),但很少有人关注改进种子选择过程。现有的 DGF 工具使用主要为 CGF 定制的种子语料库(即一组覆盖程序不同区域的种子)。我们观察到,使用基于 CGF 的语料库限制了定向灰盒模糊测试器的错误查找能力。为了弥补这一缺陷,我们提出了 TargetFuzz,这是一种为 DGF 工具提供面向目标的种子语料库的机制。我们将此语料库称为 DART 语料库,它仅包含与目标“接近”的种子。这样,DART 语料库就可以引导 DGF 找到目标,从而即使在有限的模糊测试时间内也能暴露漏洞。对 34 个真实漏洞的评估表明,与基于 CGF 的通用语料库相比,配备 DART 语料库的 AFLGo(一种最先进的定向灰盒模糊测试器)可以发现 10 个额外的漏洞,并且平均在暴露时间上实现了 4.03 倍的加速。

使用 DART 引导定向灰盒模糊测试器

使用 DART 引导定向灰盒模糊测试器PDF文件第1页

使用 DART 引导定向灰盒模糊测试器PDF文件第2页

使用 DART 引导定向灰盒模糊测试器PDF文件第3页

使用 DART 引导定向灰盒模糊测试器PDF文件第4页

使用 DART 引导定向灰盒模糊测试器PDF文件第5页

相关文件推荐

2021 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥1.0
2023 年
¥1.0
2021 年
¥2.0
2020 年
¥1.0
2025 年
¥2.0
2024 年
¥2.0
2015 年
¥1.0