量子信息的离域化或扰乱已成为理解孤立量子多体系统中热化的核心要素。最近,通过将不可积系统建模为周期驱动系统,缺乏汉密尔顿图像,而真实的汉密尔顿动力学由于计算限制通常限于小系统规模,在分析上取得了重大进展。在本文中,我们从信息论的角度研究守恒定律(包括能量守恒定律)在热化过程中的作用来解决这个问题。对于一般的不可积模型,我们使用平衡近似来表明,即使系统节省能量,最大量的信息在后期也会被扰乱(以时间演化算子的三部分互信息来衡量)。相反,我们阐明了当系统具有导致光谱退化的额外对称性时,扰乱的信息量必须减少。这一普遍理论在全息共形场论 (CFT) 和 Sachdev-Ye-Kitaev (SYK) 模型的案例研究中得到了体现。由于 1 + 1D CFT 中具有较大的 Virasoro 对称性,我们认为,在某种意义上,这些全息理论并不是最大程度混沌的,这可以通过第二个 Rényi 三分互信息的不饱和明确看出。在 SYK 模型中,粒子空穴和 U ( 1 ) 对称性的作用较弱,因为简并只有两重,我们在大 N 和小 N 时都明确证实了这一点。我们根据局部算子的增长重新解释了算子纠缠,将我们的结果与非时间序相关器所描述的信息扰乱联系起来,从海森堡的角度确定了抑制扰乱的机制。
主要关键词