随着人工智能技术的快速发展,多模式学习已成为各种应用程序中数据处理和分析的强大范式,包括自主机器人和车辆[1]和大型语言模型[2]。通过整合来自各种模式的数据,多模式学习增强了AI系统的鲁棒性和适应性,从而提高了性能,并具有更大的能力,可以有效地解决现实世界中的Challenges。多模式学习的一种显着应用是在官方驾驶中,它使自动驾驶汽车(AVS)能够使用多种数据源(例如摄像头,LIDAR,雷达,雷达和超声传感器)来解释和响应其环境。这种不同数据类型的集成使机器的感知和决策更加准确,增强了车辆检测和理解对象,预测其运动并安全地驾驶复杂驾驶场景的能力。使用不同方式中包含的信息,AV可以实现更大的鲁棒性和可靠性,降低事故的风险,并改善各种和动态驾驶条件下的整体性能。AV传感器会生成大量数据[3],根据传感器配置,每秒可能达到40千兆位(GBPS)。必须实时处理和分析这些数据,这需要大量能量,进而减少车辆的范围[4]。因此,无论是在板载处理还是使用未来的低延迟通信[5]来减少数据量,无论是在机载处理还是计算偏移到云服务上。因此,有效的压缩
主要关键词