摘要。扩散模型彻底改变了图像产生,正面临与知识产权有关的挑战。当生成的图像受培训数据中受版权保护的图像的影响时,就会出现这些挑战,这是互联网收集的数据中合理的情况。因此,从训练数据集中指向有影响力的图像(称为数据归因的任务)对于内容起源的透明度至关重要。我们介绍了蒙特雷奇(Montrage),这是一种开创性的数据归因方法。与分析模型后训练后的现有方法不同,蒙特拉奇(Montrage)整合了一种新型技术,可以通过内部模型表示在整个培训中监测世代。它是针对定制的分化模型量身定制的,其中训练动力学访问是一个实际的假设。这种方法,再加上新的损失功能,在保持效率的同时提高了性能。在两个粒度级别上评估了蒙特莱奇的优势:概念间和概念内,以高精度为单位的最新方法。这取代了Montrage对扩散模型的见解及其对AI Digital-Art版权解决方案的贡献。
主要关键词