Loading...
机构名称:
¥ 1.0

摘要:为了改变我们的生活,自主系统需要在复杂的共享环境中与其他代理进行互动。例如,自动驾驶汽车需要与行人,人驱动的汽车和其他自动驾驶汽车互动。自主交付无人机需要在其他无人机共享的空中空间中导航,或者仓库中的移动机器人必须在机器人共享的出厂空间中导航。此类应用领域的多机构性质要求我们开发一种系统的方法,以实现各种应用程序自主系统的有效相互作用。在这次演讲中,我将首先关注游戏理论计划和机器人的控制。要达到智能的机器人互动,机器人必须考虑代理人彼此决定的依赖性。我将讨论游戏理论计划和控制如何使机器人意识到它们对其他代理的影响。我将介绍我们最新的结果,以利用交互中固有的结构来开发有效的运动计划算法,该算法适用于机器人硬件上的实时操作。在谈话的第二部分中,我将重点介绍机器人如何学习和推断其周围代理的意图,以说明代理人的偏好和目标。目前,机器人可以推断出逆增强学习形式中孤立的代理的目标;但是,在多机构域中,没有孤立的代理,并且所有代理的决策均互相耦合。i将讨论一种数学理论和数值算法,以从观察到代理相互作用的观察结果中推断出这些相互关联的偏好。

2024.11.04 CSC研讨会-Negar Mehr

2024.11.04 CSC研讨会-Negar MehrPDF文件第1页