Loading...
机构名称:
¥ 1.0

摘要:移动监控提供了对空气污染的强大测量。但是,资源限制通常会限制测量数量,因此无法在所有感兴趣的位置获得评估。在响应中,已经提出了替代测量方法,例如视频和图像。先前对空气污染和图像的研究使用了静态图像(例如卫星图像或Google Street View图像)。当前的研究旨在开发深度学习方法,以从用仪表板摄像机获得的视频中推断出在道路上污染物的浓度。分析了印度班加罗尔的四种污染物(黑碳,颗粒数浓度,2.5质量浓度,二氧化碳)的五十小时。对每个视频框架的分析涉及识别对象并确定运动(通过分割和光流)。基于这些视觉提示,使用回归卷积神经网络(CNN)推断污染浓度。研究结果表明,CNN方法的表现优于其他几种机器学习(ML)技术和更多常规分析(例如,线性回归)。CO 2预测模型实现了不同的火车验证分区方法的归一化根平方误差为10-13.7%。因此,此处的结果通过使用视频和屏幕上的对象而不是静态图像的相对运动以及实施快速分析方法,从而实时对视频进行分析,从而有助于文献。关键字:与交通相关的空气污染,深度学习,计算机视觉,移动监控这些方法可以应用于其他移动监控活动,因为他们唯一需要的其他设备是便宜的仪表板摄像头。

Urban-Air质量估计 - 使用Visual-Cues-and-A- ...

Urban-Air质量估计 - 使用Visual-Cues-and-A- ...PDF文件第1页

Urban-Air质量估计 - 使用Visual-Cues-and-A- ...PDF文件第2页

Urban-Air质量估计 - 使用Visual-Cues-and-A- ...PDF文件第3页

Urban-Air质量估计 - 使用Visual-Cues-and-A- ...PDF文件第4页

Urban-Air质量估计 - 使用Visual-Cues-and-A- ...PDF文件第5页

相关文件推荐

2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2023 年
¥4.0