Loading...
机构名称:
¥ 4.0

本文提供了有条件平均治疗效果(CATE)的估计和推理方法,其特征在均质横截面和单位异质动态面板数据设置中均具有高维参数。在我们的主要示例中,我们通过将基本处理变量与解释变量相互作用来对CATE进行建模。我们手术的第一个步骤是正交的,我们从结果和基础处理中分散了对照和单位效应,并采取了交叉填充的残差。此步骤使用一种新颖的通用交叉拟合方法,我们为弱依赖的时间序列和面板数据设计。这种方法在拟合滋扰时“忽略了邻居”,并且我们通过使用Strassen的耦合来理论上为其提供动力。因此,我们可以在第一个步骤中依靠任何现代的机器学习方法,只要它足够好学习残差。第二,我们构建了CATE的正交(或残留)学习者(套件),该学习者会在残留处理与解释变量的残留处理相互作用的载体上回归结果残留。如果CATE函数的复杂性比第一阶段重新调查的复杂性更简单,则正交学习者收敛速度比基于单阶段回归的学习者快。第三,我们使用demiasing对CATE函数的参数进行同时推断。当Cate低维时,我们还可以在最后两个步骤中使用普通最小二乘。在异质面板数据设置中,我们将未观察到的单位异质性建模为与Mundlak(1978)相关单位效应模型的稀疏偏差,作为时间不变的协变量的线性函数,并利用L1-元素化来估算这些模型。

高 - ...

高 -  ...PDF文件第1页

高 -  ...PDF文件第2页

高 -  ...PDF文件第3页

高 -  ...PDF文件第4页

高 -  ...PDF文件第5页

相关文件推荐

2025 年

...

¥8.0
2025 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2025 年

...

¥7.0
2015 年

...

¥1.0
2018 年
¥1.0
2024 年

...

¥31.0
2013 年

...

¥4.0
2021 年
¥3.0
2024 年
¥3.0
2024 年

...

¥5.0
2021 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年

...

¥7.0
2021 年

...

¥21.0
2024 年

...

¥1.0
2024 年
¥1.0
2022 年
¥1.0
2020 年

...

¥1.0
2020 年
¥4.0
2025 年
¥2.0
2024 年
¥1.0
2025 年

...

¥1.0
2025 年
¥1.0