1独立研究人员,苏格拉,雅克,班加罗尔摘要:高级太阳预测已成为将可再生能源整合到现代电网中的关键因素。本理论综述研究了一系列AI驱动的混合模型 - 将深度学习体系结构(例如CNN-LSTM)与统计或基于物理的方法相结合,以证明改进的预测如何提高网格可靠性和效率。通过利用各种数据源,例如卫星图像和基于地面的测量,这些方法提供了更准确的短期和长期预测,从而使网格操作员能够更好地平衡供应和需求,最大程度地减少削减,并降低运营成本。本文还讨论了可靠的太阳预测,从鼓励透明和确切的预测到市场机制的监管框架来奖励准确的生成计划。此外,包括能源公司,太阳能经理和系统运营商在内的行业专业人员可以利用先进的预测来优化维护,存储集成和财务计划。未来的研究可以从AI预测技术中融合了气候模型的整合,为能够处理不断发展的天气模式的可扩展和自适应系统铺平了道路,并加速了全球过渡到可再生能源。索引 - 摩尔预测,混合AI模型,网格稳定性,可再生能源整合,能源政策,深度学习,气候变化
主要关键词