Loading...
机构名称:
¥ 1.0

上下文:基于宽间隙半导体材料(SIC,GAN)的电子组件在中型电子应用(10 kV / 100 A)(例如混合 /电动汽车行业)中经历了相当大的增长。超出了该功率范围,从能量问题的角度和CO 2排放的降低的角度来看,提高功率密度和开关/转换效率的挑战是相当大的,尤其是在电源分配(智能电网)和运输(Rail)的应用。为了满足这些功率要求,有必要转向带有适当带隙能量(> 4 eV)和分解字段(> 10 mV.cm-1)的所谓的超宽间隙(UWBG)材料,例如钻石,艾加(Algan)或GA 2 O 3。,GA 2 O 3具有直径为150 mm的商业基材的独特优势,其成本合理(比SIC便宜3倍)。对UWBG材料的一个非常强烈的挑战仍然是它们的兴奋剂。再次,鉴于可以在宽的值范围内轻松实现n掺杂[1-3],GA 2 O 3仍然引起了人们的关注。单极功率设备已通过正常运行[4-6]证明。通常无法使用电源设备的缺少技术构建块是生产双极设备的P型掺杂。开发了基于GA 2 O 3的设备的创新技术领域,并且对P型掺杂的控制需要研究由材料中陷阱或缺陷引起的电子水平的研究。这些缺陷也可以通过技术过程(植入,雕刻,金属污染)引起。在此主轴上开发了双极技术,博士学位受试者将主要集中精力。的确,INL实验室和“功能材料”团队在电气和电流技术方面具有广泛而独特的专业知识,用于研究由陷阱和宽频率半导体中的陷阱和缺陷引起的电子水平。

GA2O3材料和设备研究GA2O3材料和设备研究

GA2O3材料和设备研究GA2O3材料和设备研究PDF文件第1页

GA2O3材料和设备研究GA2O3材料和设备研究PDF文件第2页

GA2O3材料和设备研究GA2O3材料和设备研究PDF文件第3页

相关文件推荐

2022 年
¥1.0
2022 年
¥8.0
2022 年
¥1.0
2025 年
¥1.0
2015 年
¥23.0