摘要:供应链(SC)功效和效率可能会受到订单延误的延误,尤其是在当今快节奏的商业环境中。有效的降低风险需要确定容易延迟的供应商以及对未来中断的准确预测。准确预测可用性日期是成功执行物流操作的关键因素。通过利用机器学习(ML)技术,组织可以主动识别高风险供应商,预测延误并实施积极的措施,以最大程度地减少其对制造过程和整体SC绩效的影响。本研究探索并利用各种回归和分类ML算法来预测未来的延迟交付,确定订单交付的状态,并根据其交付性能对供应商进行分类。The employed models include K-Nearest Neighbors (KNN) Random Forest (RF) Classifier and Regression, Gradient Boosting (GB) Regres- sion and Classifier, Linear Regression (LR), Decision Trees(DT) Classifier and Regression, Logistic Regression and Support Vector Machine (SVM) Based on real data, our experiments and evaluation metrics including Mean Ab- solute Error (MAE), Mean Squared Error (MSE)和根平方误差(RMSE)表明,基于隔离的回归算法(RF回归和GB回归)提供了最佳的概括误差,并且优于测试的所有其他回归模型。同样,逻辑回归和GB分类器根据精度,回忆和F1分数指标优于其他分类算法。从这项研究中获得的知识可以帮助积极地识别高危供应商,并在面对意外的破坏时采用主动行动来提高韧性,此外SC效率和降低制造障碍。关键词:SC风险管理,订单延迟,机器学习,SC中断,供应商绩效介绍今天的SC在非常有竞争力和染色的环境下起作用。公司一直在寻找改善其流程并提高客户满意度的方法,因为它们一直在改变[1]。延迟需求是SCS遇到的问题,当时计划期间未提供商品。许多方面,例如客户的优先偏好,生产延迟或运输和收到的问题的意外变化,可能会导致延迟。与订单相关产品的准时交付是公司的关键成功因素。确保高水平的交付可靠性仍然是制造商的重中之重,并且与成本和质量一起,是成功实现全球竞争的最重要先决条件之一[2]。SC的复杂性上升意味着影响组织的不一致并不总是相同的,并且可能会随着时间的流逝而发展。此外,每个组织都应主动而不是反应地识别
主要关键词